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Abstract

The coupling of two non-linear oscillators is investigated, each with opposing non-linear overhang
characteristics in the frequency domain as a result of positive and negative cubic stiffness. This leads to the
definition of a two-degree-of-freedom Duffing oscillator in which such non-linear effects can be neutralised
under certain dynamic conditions. The physical motivation for this system stems from applications in
ultrasonic cutting in which an exciter drives a tuned blade. The exciter and the blade are both strongly non-
linear, with features strongly reminiscent of positive and negative cubic effects. It is shown by means of
approximate analysis that in the case of simple idealised coupled oscillator models a practically useful
mitigating effect on the overall non-linear response of the system is observed when one of the cubic
stiffnesses is varied. Experimentally, it has also been demonstrated that coupling of ultrasonic components
with different non-linear characteristics can strongly influence the performance of the system and that the
general behaviour of the hypothetical theoretical model is indeed borne out in practice.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical and structural systems are inherently non-linear with many sources of non-
linearities present in any practical system under consideration. Non-linearities necessarily
introduce a whole range of phenomena that are not found in linear systems, including the well-
known jump phenomenon, occurrence of multiple solutions, modulations, shifts in natural
frequencies, the generation of combination resonances, evidence of period-multiplying bifurca-
tions, and chaotic motions [1–3].
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Material and constitutive non-linearities are frequently encountered in vibration isolators in
which polymeric materials are extensively used to reduce the deleterious effects of unwanted
vibration. Non-linearities in these system can also arise from geometrical effects, the mode of
loading, or various combined phenomena involving material properties, geometrical configura-
tion, and loading characteristics. Softening effects due to material properties have been identified
and published [4–6], and these findings have specifically centred around polymeric materials in
terms of their stiffness and damping characteristics.
Many studies have been dedicated to the Duffing oscillator in different attempts to quantify and

map the local and global dynamics of systems in which softening and hardening non-linearities
feature significantly. An early article by Morozov [7] presented a qualitative study of a softening
Duffing equation, viz., the boundedness of the number of resonances and periodic solutions, the
existence of heteroclinic solutions and the behaviour of solutions in a neighbourhood of an
unperturbed separatrix contour. In the early 1980s, Ueda [8,9] extensively studied the steady state
chaotic behaviour, and randomly transitional phenomena, in a system governed by a hardening
Duffing equation. He has shown that the non-linear system under consideration can exhibit
chaotic responses (under harmonic excitation) in certain parameter regimes. By combining second
order perturbation solutions and assessment of stability by means of Floquet analysis, Nayfeh and
Sanchez [3] developed an approximate procedure for the generation of bifurcation diagrams in a
forced softening Duffing oscillator. In a non-linear system, jump phenomena occur regularly and a
hardening system reported by Soliman [10] showed that for small excitation levels the system
exhibits what appears to be linear behaviour, however this invariably becomes non-linear as the
excitation levels are increased, and unpredictable jumps to and from resonance are clearly evident.
The application of high power ultrasonic tooling to manufacturing processes is a well-

established area of research and one which has shown great potential. However, ultrasonic
machining and cutting processes have been rather under-exploited in industry due to reliability
problems associated with the non-linear behaviour of the various components that are used.
Design strategies such as ensuring vibrational uniformity and acceptable stresses in the block
horns, or blades, really have to be implemented for reliable tuned ultrasonic systems [11–14].
However, by investigating and modelling the influence of ultrasonic energy generation and its
interaction with the beneficial mechanisms in ultrasonic tooling, other solutions related to the
measured non-linear coupling effects can be formulated. The state of the art is not by any means
entirely clear-cut and so reliability limitations imposed by deficiencies in current design practices
are treated in this paper by a new attempt to exploit a mechanistic understanding of ultrasonic
system non-linearities. The outcome is a reliable tuned ultrasonic tool design strategy which is
potentially adaptable to a wide range of manufacturing processes.
Recently, research on the response of systems exhibiting non-linear cubic damping has been

reported by Shekhar et al. [15] who studied the effect of non-linear damping on the performance
of a single-degree-of-freedom shock isolator system and showed that this appreciably affects the
response. Specifically, a small negative coefficient for the damping term is more favourable than a
positive coefficient in generating a considerable reduction in the peak of the acceleration response.
In a follow-up paper, the same authors [16] proposed that three-element and two-stage isolators
are more effective when in the presence of non-linear cubic damping. In another publication,
Ravindra and Mallik [17] showed how non-linear damping could be used as a passive mechanism
to suppress chaos.
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In the well-known publication by Ott et al. [18], chaos is controlled by careful choice of a small
perturbation parameter in order to create a variety of attracting periodic motions, from which the
most desirable attractor can be selected. Since this postulation was made, interest in such
approaches has increased, and has been applied in a variety of physical experiments [19–24].
High frequency parametric vibration and amplitude modulation of the forcing function have

both been used by Chow and Maestrello [24] as the basis for a general method of vibrational
control for a certain class of non-linear evolution equations. The use of high frequency parametric
vibration introduces a change in some system parameter in order to ensure static stability, whilst
forcing amplitude modulation, if needed, can be used to stabilise an unstable periodic motion.
Maestrello [25] used a method that requires knowledge of the initial unstable disturbances in
terms of frequency, amplitude and phase, or their equivalent temporal values, to cancel growth
after several bifurcations from periodic to chaotic states.
In this paper, preliminary investigations into vibration response modifications in coupled

oscillators are discussed. In order to establish a systematic basis for this, a simple coupled
oscillator problem is proposed in which two single-degree-of-freedom sub-systems are
implemented, with the principal non-linearity being a hardening and softening cubic stiffness
effect, respectively, in each. This hypothesised theoretical vehicle in fact closely reflects the
characteristics which emerge from measurements made on actual ultrasonic cutting tooling in
which serially coupled components are encountered. Such systems routinely exhibit alternate
hardening and softening effects in this manner, notwithstanding their more complicated structural
form. In the case of the hypothesised theoretical model, the method of multiple scales is used for
the perturbation analysis of this two-degree-of-freedom coupled Duffing oscillator. Theoretical
results show that controlled variations in the softening stiffness can have a significant effect on the
overall non-linear response of the system, thereby making the overall effect hardening, softening,
or approximately linear. So, although this model is not intended to define literally a typical
ultrasonic cutting system it is still of use in that it consolidates a major phenomenon which is
readily observable in such systems, and on that basis has intrinsic value.
The experimental ultrasonic system is not directly modelled in this paper, however the

hypothesised theoretical vehicle is shown to respond in a manner which mirrors that of a typical
food industry ultrasonic cutting system. Specifically, serially coupled structural components with
different non-linearities (i.e., hardening or softening) are shown to work together in response-
modifying ways that are closely predicted by the simplified theoretical model. The fundamentally
non-linear component in an ultrasonic cutting system is invariably the ultrasonic exciter
(popularly, but incorrectly, known as the transducer), in which the effect is mainly attributable to
the piezoelectric ceramics. This effect is a predominantly softening cubic stiffness phenomenon
[26]. The inter-coupling components between the transducer and the actual blade usually take the
form of aluminium or steel bar-horns or block-horns, these being solid, tuned, components with
screw-thread connections at each end. The net effect of the bar- or block-horn, together with its
screwed connections is a hardening cubic effect. Therefore, in modal terms, the serial combination
of an ultrasonic transducer driving a tuned bar- or block-horn is that of a pair of single-degree-of-
freedom sub-systems (in the modal domain) in which softening and hardening characteristics can
mutually mitigate in order to produce broadly linear responses at the cutting blade.
The non-linear cubic effects in the hypothesised theoretical model manifest as controllable

design variables in the experimental system. Principally these comprise transducer output level
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(nominally controlled by voltage and temperature) and the physical form of the bar or block horn,
the tightening torque applied to the screwed joints, and also the actual position of the screw stud
inside the joints.
This paper explores the behaviour of the hypothesised theoretical model and then attempts to

show that judicious attention to the same class of principal non-linearities in the experimental
system can lead to improved designs for practical ultrasonic cutting systems.

2. Hypothesised theoretical model

The theoretical model of this system takes the convenient simplified form of a two-degree-of-
freedom Duffing oscillator system, as shown in Fig. 1. The model is taken to have linear damping,
as defined by coefficients c1; and c2; and linear stiffnesses, together with attendant non-linear cubic
stiffnesses, k1; k2 and h1; h2; respectively. The non-linear stiffness quantity h1 comprises a
hardening spring defined by þh1x

�3
1 and h2 constitutes a softening spring defined by �h2x

�3
2 : A

harmonic excitation force F�
1 ðtÞ ¼ F�cosO�t� is applied to the first sub-system.

2.1. Equations of motion

The governing differential equations of the system are directly derived via Lagrange’s equations
and emerge in the form of,

m1 .x
�
1 þ c1 ’x

�
1 þ c2ð ’x�1 � ’x�2 Þ þ k1x

�
1 þ k2ðx�1 � x�2 Þ þ h1ðx�1 Þ

3 þ h2ðx�2 � x�1 Þ
3 ¼ F�cosO�t�; ð1Þ

m2 .x
�
2 þ c2ð ’x�2 � ’x�1 Þ þ k2ðx�2 � x�1 Þ � h2ðx�2 � x�1 Þ

3 ¼ 0; ð2Þ

where x�1;2 ¼ x�1;2ðt
�Þ and the star represents variables which still, at this stage, possess physical

dimensions.
By introducing dimensionless time t ¼ oe1t

�; where

oe1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

k1

m1
þ

k2

m1
þ

k2

m2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

m1

� �2

þ
2k1

m1

k2

m1
�

k2

m2

� �
þ

k2

m1
þ

k2

m2

� �2
s2

4
3
5

vuuut ð3Þ

is the undamped linear natural frequency, then non-dimensional response co-ordinates in the
form of x1;2 ¼ x�1;2=x�ref ; where x�ref can be an arbitary reference displacement are introduced.
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Therefore, in terms of dimensionless time, one rewrites Eqs. (1) and (2) as

x00
1 þ 2e*z1x0

1 þ 2e*z2ðx0
1 � x0

2Þ þ g1x1 þ e*g2ðx1 � x2Þ þ e*Z1ðx1Þ
3 þ e*Z2ðx2 � x1Þ

3 ¼ e *F cosOt; ð4Þ

x00
2 þ 2e*z3ðx0

2 � x0
1Þ þ g3ðx2 � x1Þ � e*Z3ðx2 � x1Þ

3 ¼ 0; ð5Þ

where x1;2 ¼ x1;2ðtÞ and

*z1 ¼
c1

2em1oe1
; *z2 ¼

c2

2em1oe1
; *z3 ¼

c2

2em2oe1
; g1 ¼

k1

m1o2
e1

; *g2 ¼
k2

em1o2
e1

; g3 ¼
k2

m2o2
e1

;

*Z1 ¼
h1x

�2
ref

em1o2
e1

; *Z2 ¼
h2x

�2
ref

em1o2
e1

; *Z3 ¼
h2x

�2
ref

em2o2
e1

; *F ¼
F�

em1o2
e1x

�
ref

; O ¼
O�

oe1
: ð6Þ

Motions in the neighbourhood of the static equilibrium position are considered so that the
amplitude of the response is assumed to be of the order of some small parameter e; 0oe51: All
the terms in Eqs. (4) and (5) are re-formulated in terms of this small parameter, e; with the
exception of the linear inertia terms, and the linear stiffness terms containing g1 and g3: This
ensures that all other effects only appear within the higher order perturbation equations, whereas
the aforementioned terms appear in the zeroth order perturbation equations from which the
necessary generating solutions are obtained [27].

2.2. Perturbation solution of the equations of motion

The classical method of multiple scales [28–31] has been used to solve the equations up to and
including first order perturbation. The co-ordinates x1;2; and the first and second total derivatives,
are stated in power series form, in the usual way,

x1 ¼ x10 þ ex11 þ e2x12 þ?þ enx1n; x2 ¼ x20 þ ex21 þ e2x22 þ?þ enx2n; ð7; 8Þ

d

dt
¼ D0 þ eD1 þ e2D2 þ?þ enDn;

d

dt2
¼ D2

0 þ 2eD0D1 þ?; ð9; 10Þ

where x1n and x2n in Eqs. (7) and (8) represent functions of timescales Tn (i.e., T0 ¼ t and T1 ¼ et).
The partial derivatives of Eqs. (9) and (10) are stated in the standard D operator notation where
D

j
i ¼ @j=@T

j
i : Series (7)–(10), inclusive, are truncated after the first order e terms because this

perturbation analysis is limited to first order level.
Applying the method of multiple scales in the conventional manner, Eqs. (7)–(10) are

substituted into Eqs. (4) and (5), and then coefficients of like order of e are grouped together to
lead to:
Order e0:

D2
0x10 þ o2

1x10 ¼ 0; D2
0x20 þ o2

2x20 � o2
2x10 ¼ 0: ð11; 12Þ

Order e:

D2
0x11 þ o2

1x11 ¼ *FcosOt � 2D0D1x10 � 2*z1D0x10 � 2*z2D0x10 þ 2*z2D0x20 � *g2x10 þ *g2x20

� *Z1x3
10 � *Z2ðx3

20 þ 3x2
10x20 � 3x10x

2
20 � x3

10Þ; ð13Þ
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D2
0x21 þ o2

2x21 ¼ 2*z3D0x10 � 2D0D1x20 � 2*z3D0x20 þ o2
2x11

þ *Z3ðx3
20 þ 3x2

10x20 � 3x10x
2
20 � x3

10Þ; ð14Þ

where

o2
1 ¼ g1; o2

2 ¼ g3: ð15; 16Þ

Harmonic solutions to Eqs. (11) and (12) can be expressed in convenient polar form as

x10 ¼ A1ðT1Þ eio1T0 þ %A1ðT1Þ e�io1T0 ; ð17Þ

x20 ¼ A2ðT1Þ eio2T0 þ %A2ðT1Þ e�io2T0 þ A3ðT1Þ eio1T0 þ %A3ðT1Þ e�io1T0 ; ð18Þ

where A3 ¼ GA1 ¼ ðo2
2=ðo

2
2 � o2

1ÞÞA1; the overbar denotes complex conjugacy, and i ¼
ffiffiffiffiffiffiffi
�1

p
:

The functions A1;2;3 are arbitrary at this level of approximation but are determined by
elimination of the secular terms from the next order of perturbation.
The behaviour of this relatively simple system accommodates the fact that the forcing frequency

and natural frequencies can satisfy certain, fundamentally important, external and internal
resonance conditions. Since the primary system is excited at O; and this can be synchronous with
o1; or nearly so, then the external resonance condition is given by,

O ¼ o1 þ en: ð19Þ

In addition to this, the analysis shows that the case of superharmonic internal resonance is also
feasible,

o2E1
3o1: ð20Þ

This can be expressed, and therefore subsequently explored, by introducing a detuning
parameter es1 such that

o2 ¼ 1
3
o1 þ es1: ð21Þ

The detuning parameters, en and es1; are conveniently termed external and internal detuning
parameters, respectively. Other internal resonance conditions are also predicted by the analysis,
i.e., o2 ¼ o1 (primary) and o2 ¼ 3o1 (subharmonic), however these do not address the physical
phenomenon under investigation and are therefore not discussed further.
Substituting Eqs. (17) and (18) into Eq. (13), and then extracting the terms that produce secular

terms in x11 for superharmonic resonance yields the following solvability condition for the first
order expansion, noting that the general approach of multiple scales is to equate the secular terms
in Eqs. (22) and (24) to zero so as to preserve the uniformity of the expansion,

1
2
eienT0 *F � eie3s1T0 *Z2A3

2 � *g2A1 � i2o1
*z1A1 � i2o1

*z2A1 � 3*Z1A2
1
%A1 þ 3*Z2A2

1
%A1 � 3*Z2A2

1
%A3

þ 6*Z2A1A2 %A2 þ *g2A3 þ i2o1
*z2A3 � 6*Z2A1A3 %A1 þ 6*Z2A1A3 %A3 � 6*Z2A2A3 %A2 þ 3*Z2A2

3
%A1

� 3*Z2A2
3
%A3 � i2o1A

0
1 þ c:c: ¼ 0; ð22Þ
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where the prime indicates differentiation with respect to T1 and c.c. represents the
complex conjugates of the preceding terms. The uniform solution of Eq. (13) can now be
written as

x11 ¼ eio2T0
1

o2
1 � o2

2

�
*g2A2 þ i2o2

*z2A2 � 6*Z2A1A2 %A1 þ 6*Z2A1A2 %A3 � 3*Z2A2
2
%A2


þ 6*Z2A2A3 %A1 � 6*Z2A2A3 %A3

��
þ terms proportional to eið2o2þo1ÞT0 ; ei3o1T0 ; eiðo2�2o1ÞT0 ;

eiðo2þ2o1ÞT0 ; eið2o2�o1ÞT0 þ c:c: ð23Þ

Substituting Eq. (23) into Eq. (14), because of the explicit presence of o2
2x11 in the right hand

side of Eq. (14), and then identifying the secular terms for x21 results in,

ei o1�3o2ð ÞT0 �3*Z3A1 %A
2
2 þ 3*Z3A3 %A

2
2 þ 3o2

2 *Z2A1 %A
2
2=4o1o2 � 4o2

2

 �
� 3o2

2 *Z2A3 %A
2
2=4o1o2 � 4o2

2

 ��
þ G *g2A2 þ i2o2

*z2A2 � 6*Z2A1A2 %A1 þ 6*Z2A1A2 %A3 � 3*Z2A2
2
%A2


þ 6*Z2A2A3 %A1 � 6*Z2A2A3 %A3

�
� i2o2

*z3A2 þ 6*Z3A1A2 %A1 � 6*Z3A1A2 %A3 þ 3*Z3A2
2
%A2 � 6*Z3A2A3 %A1

þ 6*Z3A2A3 %A3 � i2o2A
0
2 þ c:c: ¼ 0: ð24Þ

The complex amplitudes A1 and A2 can then be expressed in polar forms as

An ¼ 1
2
ane

ibn½T1�; %An ¼ 1
2
ane

�ibn½T1�; ð25Þ

where an and bn are real. From this position the real and imaginary terms can then be separated
out to generate four modulation equations,

ð *F=2ÞcosL1 � 1
2
*g2a1 þ 1

2
G*g2a1 þ ð�3

8
*Z1 þ 3

8
*Z2 � 9

8
G*Z2 þ 9

8
G2 *Z2 � 3

8
G3 *Z2Þa3

1

þ 3
4
*Z2a1a

2
2 �

3
4
G*Z2a1a22 �

1
8
cosF1 *Z2a32 þ o1a1b

0
1 ¼ 0; ð26Þ

ðF=2ÞsinL1 � o1
*z1a1 � o1

*z2a1 þ Go1
*z2a1 � 1

8
sinF1 *Z2a32 � o1a

0
2 ¼ 0; ð27Þ

1

2o2
1 � 2o2

2

o2
2*g2a2 þ 3Go2

2 *Z2a
2
1a2

 �
�

1

4o2
1 � 4o2

2

3o2
2 *Z2a

2
1a2 þ 3G2o2

2 *Z2a
2
1a2

 �
þ

1

32o1o2 � 32o2
2

3 cosF1o2
2 *Z2a1a

2
2 � 3G cosF1o2

2 *Z2a1a
2
2

 �
�

3o2
2 *Z2a

3
2

8o2
1 � 8o2

2

þ 3
4
*Z3 � 3

2G*Z3 þ 3
4G

2 *Z3 þ 3
8 cosF1 *Z3 þ 3

8G cosF1 *Z3
 �

a21a2 þ
3
8
*Z3a32 þ o2a2b

0
2 ¼ 0; ð28Þ

o3
2
*z2a2

o2
1 � o2

2

þ
3 sinF1o2

2 *Z2a1a
2
2

32o1o2 � 32o2
2

ðG� 1Þ þ 3
8
sinF1 *Z3a1a2

2ð1� GÞ � o2
*z3a2 � o2a

0
2 ¼ 0; ð29Þ

where

L1 ¼ n1T1 � b1; F1 ¼ 3s1T1 � b1 þ 3b2: ð30; 31Þ
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The form of Eqs. (26)–(29) renders the system autonomous. If the following conditions are used
to impose steady state conditions,

a01 ¼ a02 ¼ L0
1 ¼ F0

1 ¼ 0 ð32Þ

and then Eqs. (30) and (31) are differentiated with respect to T1 leading to

b01 ¼ n1; b02 ¼
1
3
n1 � s1 ð33; 34Þ

then substitution of Eqs. (32)–(34) into Eqs. (26)–(29) will lead to two approximate analytical
forms from which the amplitudes of the system can be obtained when it is undergoing the
synchronous external resonance of Eq. (19) and the superharmonic internal resonance defined in
Eq. (21). The presence of e in Eqs. (35) and (36) allows a return to the original physically defined
parameters, thus,

1296e *F2 ðG� 1Þ2 o1 þ o2ð Þ2 o2e*Z2 þ 4ðo2 � o1Þe*Z3ð Þ2a2
1

 �
¼ o1 e*z1 � ðG� 1Þe*z2

 �
a1 �

4o2ðo2
2ðe*z2 þ e*z3Þ � o2

1e*z3Þe*Z2a
2
2

3ðG� 1Þðo1 þ o2Þðo2e*Z2 þ 4ðo2 � o1Þe*Z3Þa1

 !2

þ

9ðG� 1Þðo1 þ o2Þð4o1e*Z3 � o2ðe*Z2 þ 4e*Z3ÞÞa21ð8en1o1 þ 4ðG� 1Þe*g2

�3ðe*Z1 þ ðG� 1Þ3e*Z2Þa21Þ þ 2e*Z2ð8o2ð2ðen1 � 3es1Þðo2
1 � o2

2Þ þ 3o2e*g2Þ

�9ðG� 1Þ2ðo2ðo2 � 3o1Þe*Z2 þ 8ðo2
1 � o2

2Þe*Z3Þa
2
1Þa

2
2

�36e*Z2ðo2
2ðe*Z2 þ e*Z3Þ � o2

1e*Z3Þa
4
2

0
BBBB@

1
CCCCA

2

; ð35Þ

ðo1 � o2Þ
2 576o2

2

o2
2e*z2

o2
2 � o2

1

þ e*z3

 !2

þ
1

ðo2
1 � o2

2Þ
2

4o2ð2ðen1 � 3es1Þðo2
2 � o2

1Þ � 3o2e*g2Þ

þ9ðo2
2ðe*Z2 þ e*Z3Þ � o2

1e*Z3Þð2ðG� 1Þ2a2
1 þ a2

2Þ

 !2
0
@

1
A:

¼ 81
16
ðG� 1Þ2ðo2e*Z2 þ 4ðo2 � o1Þe*Z3Þ

2a2
1a

2
2: ð36Þ

Using the expressions in Eqs. (35) and (36), the next section presents some numerical results
obtainable for the amplitudes a1 and a2; for the superharmonic resonance condition under various
conditions.

3. Results

3.1. Approximate analytical responses in the frequency domain

Fig. 2 shows the non-dimensionalised response plots of amplitudes a1 and a2 for the case of the
superharmonic resonance of Eq. (21). In these plots, the hardening cubic stiffness coefficient h1;
the excitation level, and all system quantities other than the softening cubic stiffness coefficient h2;
are kept constant. It is evident that as h2 is increased or decreased it affects the general
characteristic behaviour of the system. The effect of increasing h2 manifests as more accentuated
softening behaviour (by bending towards the left) in the response of both a1 and a2; and
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conversely, a decrease in h2 will cause the system to be less softening and bend towards a linear
response. The most desirable response is when h2 ¼ 0:008 h1 for which both responses a1 and a2

are more linear in appearance.

3.2. Direct numerical integration

In order to provide another theoretical basis for the comparison with the results from the
multiple scales analysis, results from direct numerical integration of the differential equations are
presented next. Figs. 3 and 4 show the results of using NDSolve in Mathematica [32] to
numerically integrate Eqs. (1) and (2). Figs. 3a and 4a show the non-dimensionalised logarithmic
plot of the amplitude responses x1 and x2 with respect to the excitation frequency O: The same
variables are again kept constant as in Section 3.1, and only the softening cubic stiffness, h2 is
varied.
An upward and downward sweep of the excitation frequency has been carried out for each

iteration. The thicker lines denote the upward sweeps while the thinner lines denote the downward
sweeps. It is clearly seen from Figs. 3b and 4b that the regions between the respective thick and
thin lines are unstable, noting that the unstable inner solution is not shown due to the fact that
numerical integration does not converge on definitionally unstable solutions. The unstable regions
in Figs. 3c and 4c are approximately around O ¼ 3:23 to 3.27 with slight variations for the
different values of h2; and these can only be seen clearly if the diagrams are enlarged.
A closer look at the first mode and the third order superharmonic is highlighted in Figs. 3b,4b

and 3c,4c, respectively. Correlating with previous results it is seen that there is a consistent
phenomenon, whereby as the softening cubic coefficient is increased, both the responses in the first
mode of x1 and x2 show accentuated softening (see Figs. 3b and 4b). The amplitudes of both a2
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and x2 are also marginally higher than a1 and x1: The results for the superharmonic in Figs. 3c
and 4c cannot be compared to the analysis from the method of multiple scales because the latter
only gives results for the first mode around the region close to the external resonance condition
where en ¼ 0; as in Eq. (19). However, it is interesting to note that when the softening cubic
stiffness coefficient is increased, the characteristic shows a tendency to become more linear in Fig.
3c, whilst a more progressive hardening effect is visible in Fig. 4c.

3.3. Response bifurcations

Understanding the dynamics within Eqs. (1) and (2) can be extended by recourse to further
numerical investigations. Using proprietary numerical analysis software, Dynamics 2 originated
by Nusse and Yorke [33], bifurcatory behaviour of amplitude response x1 as a function of the
excitation frequency O; is depicted in Fig. 5. Again plotting with the same conditions as Sections
3.1 and 3.2, it is evident that for the third order superharmonic, as the cubic softening coefficient is
increased from Figs. 5a–d, the response becomes more linear, hence correlating with Fig. 3c. The
first mode is enlarged by a sweep up (see Figs. 5e–h) and a sweep down (see Figs. 5i–l) around the
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Fig. 3. (a) Direct numerical integration of non-dimensionalised x1 versus O; (b) enlarged view of region Z1; (c) enlarged

view of region Z2. Keys as for Fig. 2.
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resonant region, and it is again evident that the cubic softening coefficient accentuates the
softening effect, mirroring that in Fig. 3b.
Fig. 6 shows the bifurcation diagrams of amplitude response x2 as a function of the excitation

frequency O: Further evidence of accentuated softening by the increase of the cubic softening
coefficient is extended in Figs. 6e–l. In the superharmonics of Figs. 6a–d, the increase of the cubic
softening coefficient correlates with the numerical integration of Fig. 4c, whereby it becomes
progressively more hardening. However, the graphs from Dynamics 2 depict these as negative
values, and the analysis is automatically truncated in Figs. 6c and d due to the computational
limitations of the program. Despite these differences, both methods still show the same trend
regarding the non-linear behaviour of the response curves. Given that necessary and sufficient
conditions exists for possible chaos in the form of one stable and one unstable equilibrium then it
appears that the presence of chaos in the downward sweep, but not in the upward sweep, is
strongly influenced by the effect of the relevant initial conditions. This observation is made in the
sense of Pezeshki and Dowell’s [34] proposal that such Duffing systems manifest disconnections in
the fractal form of the map of initial conditions and that this leads to chaos, or not, dependent on
the precise nature of those initial conditions.
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Fig. 4. (a) Direct numerical integration of non-dimensionalised x2 versus O; (b) enlarged view of region Z3; (c) enlarged

view of region Z4. Keys as for Fig. 2.
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Fig. 5. Bifurcation diagrams showing non-dimensionalised x1 as a function of O: (a) h2 ¼ 0:008 h1 for sweep-up

analysis; (b) h2 ¼ 0:0167 h1 for sweep-up analysis; (c) h2 ¼ 0:042 h1 for sweep-up analysis; (d) h2 ¼ 0:083 h1 for sweep-

up analysis; (e) is the sweep-up and (i) the sweep-down enlargement of region Z5; (f) is the sweep-up and (j) the sweep-

down enlargement of region Z6; (g) is the sweep-up and (k) the sweep down enlargement of region Z7 and (h) is the

sweep-up and (l) the sweep-down enlargement of region Z8.

F.C.N. Lim et al. / Journal of Sound and Vibration 272 (2004) 1047–10691058



ARTICLE IN PRESS

Fig. 6. Bifurcation diagrams showing non-dimensionalised x2 as a function of O: (a) h2 ¼ 0:008 h1 for sweep-up

analysis; (b) h2 ¼ 0:0167 h1 for sweep-up analysis; (c) h2 ¼ 0:042 h1 for sweep-up analysis; (d) h2 ¼ 0:083 h1 for sweep-

up analysis; (e) is the sweep-up and (i) the sweep-down enlargement of region Z9; (f) is the sweep-up and (j) the sweep-

down enlargement of region Z10; (g) is the sweep-up and (k) the sweep down enlargement of region Z11 and (h) is the

sweep-up and (l) the sweep-down enlargement of region Z12.
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The Lyapunov exponents of a system are a set of invariant geometric measures which describe,
in an intuitive way, the dynamical content of the system. In particular, they serve as a measure of
how easy it is to perform prediction on the system. Lyapunov exponents quantify the average rate
of convergence or divergence of nearby trajectories, in a global sense. A positive exponent implies
divergence, a negative one convergence, and a zero exponent indicates the temporally continuous
nature of a flow. Consequently a system with positive exponents has positive entropy, in that
trajectories that are initially close together move apart over time. The more positive the exponent,
the faster they move apart. Similarly, for negative exponents, the trajectories move together. Thus,
a positive Lyapunov exponent, is among the strongest indicators of chaotic motion.
Fig. 7 shows the Lyapunov exponents plotted for the bifurcations of the softening sweep down

in Figs. 5i–l. In the regions of the softening characteristics, chaotic motions are evident by the
positive values of the Lyapunov exponents. And as the cubic softening coefficient is increased, the
system gets more softening and more chaotic, with a wider region of positive Lyapunov
exponents.
Fig. 8 shows the bifurcation of the excitation acceleration when the excitation frequency is at its

first mode eigenvalue of oe1 ¼ 209:828 rad=s: By exaggerating the excitation acceleration to a high
value, the periodic response for the smallest cubic softening coefficient in Fig. 8a (i.e., the most
linear response in Sections. 3.1–3.3), bifurcates to what could be chaos as the coefficient is
increased (see Figs. 8b–d). Also from these graphs, as the response appears to become chaotic, less
excitation acceleration is required in each of the four cases, successively.

4. Experimental work

Ultrasonic systems behave in a noticeably non-linear fashion when run under certain
conditions, particularly high power, continuously operating systems. The review paper on the
non-linear dynamics of engineering components by Jerrelind and Stensson [35] gives a
comprehensive definition of inherently non-linear behaviour in a wide range of practical
components. In the food manufacturing industry, ultrasonic cutting is of considerable interest and
this requires the application of high energy, ultrasonic oscillations within mechanical cutting tools
over long operating periods. Because of this, the mechanical cutting tooling is required to be tuned
so that modal energy does not leak out into audible lower frequency modes, both for reasons of
efficiency, as well as longevity due to the minimisation of fatigue. Non-linear characteristics
within the motion of the cutting tool are not particularly desirable because they can lead to
multivalued responses, complex bifurcatory behaviour, unwanted inter-modal coupling, and also
other phenomena such as combination resonances and very low cutting efficiency due to high
levels of modal spill-over. For these reasons linearisation of the cutting tool response is seen as an
important goal, however it has to be realised that non-linearity within the individual parts of the
ultrasonic cutting system cannot necessarily be eradicated at source.
Because of this, the authors have proposed an alternative strategy in which the inherent and

predominant non-linearities of the constituent parts of the ultrasonic cutting system are
manipulated in such a way that their individual effects on the overall response can be effectively
neutralised. In order to justify this work, a programme of experimental research was conducted in
order to identify, and therefore confirm, the precise nature of the predominant non-linear
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Fig. 7. Lyapunov exponents diagrams of non-dimensionalised x1 (i.e., Figs. 5i–l): (a) h2 ¼ 0:008 h1; (b) h2 ¼ 0:0167 h1;
(c) h2 ¼ 0:042 h1 and (d) h2 ¼ 0:083 h1:
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characteristics in each of the principal parts of an industrial ultrasonic cutting system. The
findings of this work supported strongly the notion that such systems could be seen as two serially
coupled sub-systems, each with opposing cubic stiffness non-linearities strongly predominating.

4.1. Instrumentation

Fig. 9 shows the experimental configuration for measuring the non-linear response of the
ultrasonic system. The exciter (or transducer) is driven by a function generator connected to a
signal amplifier. The vibration response of the transducer is then measured in the Cartesian x; y
and z co-ordinates by means of a Polytek 3D Laser Doppler Vibrometer (3D LDV), allowing both
in-plane and out-of-plane responses to be identified and monitored. A multi-channel data
acquisition analyser connected to a portable computer enables the identification of system
responses via contemporary signal processing software (DataPhysics SignalCalc 620).
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Fig. 8. Bifurcation of excitation force, O� ¼ oe1 ¼ 209:828 rad=s for (a) h2 ¼ 0:008 h1; (b) h2 ¼ 0:0167 h1; (c) h2 ¼
0:042 h1 and (d) h2 ¼ 0:083 h1:
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4.2. Experimental results

The non-linear response characteristics of a typical industry standard 35 kHz high power
ultrasonic transducer, as shown in Fig. 10a, can be obtained from an upward and downward
stepped-sine sweep about its tuned frequency. The measured longitudinal mode response of the
transducer is shown in Figs. 10b and c for two different excitation levels. Fig. 10b shows the
transducer’s response at an excitation of 30V. Then, as the excitation is increased to 50V as in

ARTICLE IN PRESS

Fig. 9. Experimental set-up for response measurements.
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Fig. 10c, a region of hysteresis, combined with amplitude jumps and stable and unstable
multivalued responses, becomes evident. As the frequency is swept upwards, there is an upward
jump at approximately 35.34 kHz. Likewise, as the frequency is swept downwards, there is a
downward jump effect at approximately 35.31 kHz. Within this small region hysteretic behaviour
is plainly evident. The extremely narrow frequency band over which this occurs is a function of
the high Q of such systems and underlines the importance of very precise design so that these
effects can be reduced in such a way that the output of the cutting system to which the transducer
is attached is as efficient and robust as possible. The frequency shifts in Figs. 10b and c are
considered to be due to the effects of damping and thermal phenomena over the time duration of
the experiment.
Ultrasonic block and bar-horns are specially machined components used to transmit vibration

from a transducer to a tool or some other specialised tuned component. In this work, a simple
bar-horn of aluminium material comprising a solid cylindrical rod (of length 1.5 l) is attached to
the transducer via a threaded stud half-screwed into both components (see Fig. 11a). At the 30V
excitation level, it can be seen that the response in Fig. 11b has less of a softening characteristic
compared with that of Fig. 10b. A similar observation applies to the 50V excitation level, with the
characteristic region in Fig. 11c now having reduced in influence. The results obtained for typical
industrially relevent equipment suggests that the strongly softening nature of the transducer can
only be mitigated to a certain extent by the addition of characteristically hardening bar or block
horns, and therefore that truly linearised response at the output of the system is not easily achieved.
Fig. 12 compares the non-linear performance of the same transducer, but attached directly to a

0.5 l and a l cutting blade with both blades manufactured from tool steel. In the first case at 30V
excitation level (see Fig. 12b), an even softer response is obtained than that for the transducer by
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itself. However, the l blade exhibits a predominantly hardening characteristic and so the
combined response is now significantly linearised as depicted in Fig. 12d.

4.3. Other influences on system non-linearity

These experimental investigations have also shown that the tightness of the screwed joints in
between the coupled components contributes to the non-linear characteristics of the system. The
joint between the transducer and the 1.5 l bar-horn in Fig. 11a has been tightened with a higher
torque and shows a more linearised response in Fig. 13a than that of a lower-torque joint in
Fig. 13b.
The non-linear characteristics of the system can also be varied by means of the axial positioning

of the stud within the joint. Fig. 14 shows three different configurations for the position of the
threaded stud. It is evident that when the stud is fully fitted into the transducer-base (see Fig. 14a),
the smallest non-linear region is evident in the system response at the blade tip compared with a
configuration where it is half-fitted into the blade-base (see Fig. 14b). This effect is even more
accentuated for the other extreme case where the stud is fully fitted into the blade-base (see
Fig. 14c), for which the widest non-linear response region can be observed.
The theoretical analyses of Sections 2 and 3 investigate a simple discrete physical system which

is a vehicle for the phenomena of interest but is not a direct model of the ultrasonic system
discussed above. The resonance conditions predicted theoretically in those sections do not,
therefore, explicitly define the resonant behaviour of the experimental system. However the
theoretical model does indeed encapsulate the phenomena which can be observed, as discussed
here, in the experimental system. For this purpose the superharmonic resonance condition is
examined in Sections 2 and 3 because of the particularly clear-cut manifestation of the phenomena
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of interest. These phenomena are also present in the subharmonic case and despite some algebraic
complexities will also be present in the primary resonance case.

5. Conclusions

This paper has considered the issue of response modifications within an ultrasonic system as
used within the food industry. The technique that has been developed is based on the exploitation
of the natural mitigating effects of serially coupled non-linear sub-systems on the overall system
response. It has been shown theoretically that certain non-linear effects can be advantageously
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neutralised with the novel methodology of coupling another sub-system of opposite non-linear
characteristic. It has been experimentally demonstrated that components with different
geometries, materials and wavelengths are shown to possess different non-linear characteristic.
By coupling them together, the overall non-linear response of the system has been usefully
influenced.
The method of multiple scales and direct numerical method have both been used to solve for the

superharmonic resonance of a two-degree-of-freedom Duffing-type system. Both analyses have
shown good correlation regarding the behaviour of the responses when the softening cubic
stiffness coefficient is varied. Further analyses on the dynamic bifurcations have also been carried
out and similar behaviour when varying the softening cubic stiffness coefficient is evident.
Theoretically, by varying the softening cubic stiffness coefficient, this will have an effect on the

overall linearity of the system. Applying this approach to an experimental ultrasonic system, a
softening transducer can be somewhat linearised by adding another hardening component such as
the 1.5 l bar-horn or the l blade. However, adding another softening component such as the 0.5 l
blade to the transducer makes the system even more softening in nature. Other ways of varying
the linearity of the system can be achieved by the tightness of the joint and the axial positioning of
the stud within the joint. A tighter joint and having the stud fully fitted into the transducer-base
has been shown to give a more linear response.
This research provides some basic theory and understanding of how non-linear systems can be

made more efficient. It has also initiated an identification of the non-linear characteristics of some
ultrasonic components, and other factors that will influence the non-linearity. The practical goal
has been to try to get the response of the blade (i.e., at the far end of the chain from the
transducer) to be linear, irrespective of the fact that the transducer or the interconnecting
components such as joints and bar-horn are all non-linear. This is tackled by means of exploiting
the alternately non-linear characteristics of soft, hard, soft, hard, etc., effects that the serially
linked transducer, joint, bar-horn, joint, and blade may provide.
Engineers and scientists are encouraged to use this new approach with prior understanding of

the non-linearity of the particular components to be coupled. More research could stem from here
in understanding how different variables (e.g., geometries, materials, wavelengths, etc.) will
contribute to a component’s non-linear characteristics. By obtaining a good basic understanding
of each individual component, an ideal and robust overall linear system can ultimately be
configured, and hence more reliable and efficient industrial systems can be designed. From here,
one could intend to move onto fully representative actual models of the ultrasonic system as

initiated from thinking about this simplistic theoretical vehicle, now that the experiments have
borne out the theoretical proposal that this approach to the control of non-linear behaviour of
such a system is possible.

Acknowledgements

The authors gratefully acknowledge the support of the Engineering and Physical Sciences
Research Council (EPSRC) under grant GR/M58214/01 and Nestl!e UK. They also wish to thank
the anonymous reviewers for their insightful comments on the manuscript.

ARTICLE IN PRESS

F.C.N. Lim et al. / Journal of Sound and Vibration 272 (2004) 1047–1069 1067



References

[1] M.P. Cartmell, J. Lawson, Performance enchancement of an autoparametric vibration absorber by means of

computer control, Journal of Sound and Vibration 177 (2) (1994) 173–195 (doi:10.1006/jsvi.1994.1426).

[2] P. Woafo, H.B. Fotsin, J.C. Chedjou, Dynamics of two nonlinearly coupled oscillators, Physica Scripta 57 (1998)

195–200.

[3] A.H. Nayfeh, N.E. Sanchez, Bifurcations in a forced softening duffing oscillator, International Journal of

Non-Linear Mechanics 24 (6) (1989) 483–497 (doi:10.1016/0020-7462(89)90014-0).

[4] J.A. Harris, A. Stevenson, On the role of non-linearity in the dynamic behaviour of rubber components, Rubber

Chemistry and Technology 59 (1986) 740–764.

[5] J.A. Harris, Dynamic Testing under non-sinusoidal conditions and the consequences of non-linearity on service

performance, Rubber Chemistry and Technology 60 (1987) 870–887.

[6] A.K. Mallik, V. Kher, M. Puri, H. Hatwal, On the modelling of non-linear elastomeric vibration isolators, Journal

of Sound and Vibration 219 (2) (1999) 239–253 (doi:10.1006/jsvi.1998.1883).

[7] A.D. Morozov, A complete qualitative investigation of Duffing’s equation, Differential Equations 12 (1976)

164–174.

[8] Y. Ueda, Randomly transitional phenomena in the system governed by Duffing’s equation, Journal of Statistical

Physics 20 (2) (1979) 181–196.

[9] Y. Ueda, Steady motions exhibited by Duffing’s equation: a picture book of regular and chaotic motions, in: P.J.

Holmes (Ed.), New Approaches to Nonlinear Problems in Dynamics, SIAM, Philadelphia, 1980, pp. 311–322.

[10] M.S. Soliman, Non-linear vibrations of hardening systems: chaotic dynamics and unpredictable jumps to and from

resonance, Journal of Sound and Vibration 207 (3) (1997) 383–392 (doi:10.1006/jsvi.1997.1095).

[11] A. Smith, A. Nurse, G. Graham, M. Lucas, Ultrasonic cutting—a fracture mechanics model, Ultrasonics 34 (1996)

197–203 (doi:10.1016/0041-624X(95)00078-H).

[12] M. Lucas, G. Graham, A.C. Smith, Enhanced vibration control of an ultrasonic cutting process, Ultrasonics 34

(1996) 205–211 (doi:10.1016/0041-624X(95)00079-I).

[13] G. Graham, J.N. Petzing, M. Lucas, Modal analysis of ultrasonic block horns by ESPI, Ultrasonics 37 (2) (1999)

149–157 (doi:10.1016/S0041-624X(98)00050-X).

[14] A. Cardoni, M. Lucas, Enhanced Vibration performance of ultrasonic block horns, Ultrasonics 40 (2002) 365–369

(doi:10.1016/S0041-624X(02)00123-3).

[15] N.C. Shekhar, H. Hatwal, A.K. Mallik, Response of non-linear dissipative shock isolators, Journal of Sound and

Vibration 214 (4) (1998) 589–603 (doi:10.1006/jsvi.1997.1468).

[16] N.C. Shekhar, H. Hatwal, A.K. Mallik, Performance of non-linear isolators and absorbers to shock excitations,

Journal of Sound and Vibration 227 (2) (1999) 293–307 (doi:10.1006/jsvi.1999.2346).

[17] B. Ravindra, A.K. Mallik, Chaotic response of a harmonically excited mass on an isolator with non-linear stiffness

and damping characteristics, Journal of Sound and Vibration 182 (3) (1995) 345–353 (doi:10.1006/jsvi.1995.0203).

[18] E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos, Physical Review Letters 64 (11) (1990) 1196–1199 (doi:10.1103/

PhysRevLett.64.1196).

[19] W.L. Ditto, S.N. Rauseo, M.L. Spano, Experimental control of chaos, Physical Review Letters 65 (26) (1990)

3211–3214 (doi:10.1103/PhysRevLett.65.3211).

[20] K. Pyragas, A. Tamasevicius, Experimental control of chaos by delayed self-controlling feedback, Physics Letters

A180 (1993) 99–102 (doi:10.1016/0375-9601(93)90501-P).

[21] B. Hubiger, R. Doemer, H. Heng, W. Marienssen, Approaching nonlinear dynamics by studying the motion of a

pendulum, III: predictability and chaotic motion, International Journal of Bifurcation and Chaos in Applied

Sciences and Engineering 4 (1994) 773–784.

[22] L. Maestrello, Active control of panel oscillation induced by accelerated boundary layer and sound, American

Institute of Aeronautics and Astronautics Journal 35 (5) (1997) 796–801.

[23] V.V. Bolotin, A.A. Grishko, A.N. Kounadis, C. Gantes, J.B. Robert, Influence of initial conditions on the

postcritical behavior of a nonlinear aeroelastic system, Nonlinear Dynamics 15 (1998) 63–81.

[24] P.L. Chow, L. Maestrello, Vibrational control of a non-linear elastic panel, International Journal of Non-Linear

Mechanics 36 (2001) 709–718 (doi:10.1016/S0020-7462(00)00038-X).

ARTICLE IN PRESS

F.C.N. Lim et al. / Journal of Sound and Vibration 272 (2004) 1047–10691068



[25] L. Maestrello, The influence of initial forcing on non-linear control, Journal of Sound and Vibration 239 (4) (2001)

873–883 (doi:10.1006/jsvi.2000.3222).

[26] N. Aurelle, D. Guyomar, C. Richard, P. Gonnard, L. Eyraud, Nonlinear behavior of an ultrasonic transducer,

Ultrasonics 34 (1996) 187–191 (doi:10.1016/0041-624X(95)00077-G).

[27] K.R. Asfar, Effect of non-linearities in elastomeric material dampers on torsional vibration control, International

Journal of Non-Linear Mechanics 27 (6) (1992) 947–954 (doi:10.1016/0020-7462(92)90047-B).

[28] A.H. Nayfeh, Perturbation Methods, Wiley-Interscience, New York, 1973.

[29] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley-Interscience, New York, 1979.

[30] M.P. Cartmell, Introduction to Linear, Parametric and Nonlinear Vibrations, Chapman & Hall, London, 1990.

[31] J.A. Murdock, Perturbations: Theory and Methods, SIAM, Philadelphia, PA, 1999.

[32] S. Wolfram, The Mathematica Book, 3rd Edition, Wolfram Media and Cambridge University Press, Cambridge,

1996.

[33] H.E. Nusse, J.A. Yorke, Dynamics: Numerical Explorations, 2nd Edition, Springer, New York, 1998.

[34] C. Pezeshki, E.H. Dowell, On chaos and fractal behavior in a generalized Duffing’s system, Physica D 32 (2) (1988)

194–209 (doi:10.1016/0167-2789(88)90051-6).

[35] J. Jerrelind, A. Stensson, Nonlinear dynamics of parts in engineering systems, Chaos, Solitons and Fractals 11 (15)

(2000) 2413–2428 (doi:10.1016/S0960-0779(00)00016-3).

ARTICLE IN PRESS

F.C.N. Lim et al. / Journal of Sound and Vibration 272 (2004) 1047–1069 1069


	A preliminary investigation into optimising the response of vibrating systems used for ultrasonic cutting
	Introduction
	Hypothesised theoretical model
	Equations of motion
	Perturbation solution of the equations of motion

	Results
	Approximate analytical responses in the frequency domain
	Direct numerical integration
	Response bifurcations

	Experimental work
	Instrumentation
	Experimental results
	Other influences on system non-linearity

	Conclusions
	Acknowledgements
	References


